
AN AUTOMATED ROVER COMMAND GENERATION
PROTOTYPE FOR THE MARS 2003 MARIE CURIE ROVER

Rob Sherwood, Andrew Mishkin, Tara Estlin, Steve Chien,
Scott Maxwell, Barbara Engelhardt, Brian Cooper, Gregg Rabideau

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91 109

firstname.lastname@jpl.nasa.gov
81 8-393-5378

Abstract
This paper discusses a proof-of-concept prototype for ground-based automatic generation of

validated rover command sequences from high-level science and engineering activities. This
prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial
Intelligence (AI) based planning and scheduling system will autornatically generate a command
sequence that will execute within resource constraints and satisfy flight rules. Commanding the rover
to achieve mission goals requires significant knowledge of the rover design, access to the low-level
rover command set, and an understanding of the performance metrics rating the desirability of
alternative sequences. It also requires coordination with external events such as orbiter passes and
dayhight cycles. An automated planning and scheduling system encodes this knowledge and uses
search and reasoning techniques to automatically generate low-level command sequences while
respecting rover operability constraints, science and engineering preferences, and also adhering to
hard temporal constraints. Enabling goal-driven commanding of planetary rovers by engineering and
science personnel greatly reduces the requirements for highly skilled rover engineering personnel and
Rover Science Team time. This in turn greatly reduces mission operations costs. In addition, goal-
driven commanding permits a faster response to changes i n rover state (e.g., faults) or science
discoveries by removing the time consuming manual sequence validation process, allowing rapid
"what-if" analyses, and thus reducing overall cycle times.

Introduction
Unlike more traditional deep space missions, surface roving missions must be operated in a

reactive mode, with mission planners waiting for an end of day telemetry downlink--including critical
image data--in order to plan the next day's worth of activities. Communication time delays over
interplanetary distances preclude simple 'joysticking' of the rover. A consequence of this approach to
operations is that the full cycle of telemetry receipt, science and engineering analysis, science plan
generation, command sequence generation and validation, and uplink of the sequence, must typically
be performed in twelve hours or less. Yet current rover sequence generation is manual (Mishkin, et
al., 1998), with limited ability to automatically generate valid rover activity sequences from more
general activitiedgoals input by science and engineering team members. Tools such as the Rover
Control Workstation (RCW) and the Web Interface for Telescience (WITS) provide mechanisms for
human operators to manually generate plans and command sequences. (Backes, et. al, 1998) These
tools even estimate some types of resource usage and identify certain flight rule violations. However,
they do not provide any means to modify the plan i n response to the constraints imposed by available
resources or flight rules, except by continued manual editing of sequences. This current situation has
two drawbacks. First, the operator-intensive construction and validation of sequences puts a
tremendous workload on the rover engineering team. The manual process is error-prone, and can lead
to operator fatigue over the many months of mission operations. Second, the hours that must be
reserved for sequence generation and validation reduces the time available to the science team to
identify science targets and formulate a plan for submission to the engineering team. This results i n
reduced science return. An automated planning tool would allow the science team and sequence team
to work together to optimize the plan. Many different plan options could be explored. The faster
turnaround of automated planning also permits shorter than once a day planning cycles.

1

mailto:firstname.lastname@jpl.nasa.gov

The Rover Control Workstation (RCW) tool, used to operate the Sojourner rover during the
Pathfinder mission, provides visualization for vehicle traverse (movement) planning, a command
interface, constraint checking for individual commands, and some resource estimation (for sequence
execution time and telemetry volume). However, this tool was never intended for automated goal-
based planning of rover activities. To deal with these issues, there is a need for a new tool that is
specifically geared toward automated planning.

We are using AI planning/scheduling technology to automatically generate valid rover command
sequences from activity sequences specified by the mission science and engineering team. This
system will automatically generate a command sequence that will execute within resource constraints
and satisfy flight rules. Commanding the rover to achieve mission goals requires significant
knowledge of the rover design, access to the low-level rover conmand set, and an understanding of
the performance metrics rating the desirability of alternative sequences. It also requires coordination
with external events such as orbiter passes and day/night cycles. An automated planning and
scheduling system encodes this knowledge and uses search and reasoning techniques to automatically
generate low-level command sequences while respecting rover operability constraints, science and
engineering preferences, and also adhering to hard temporal constraints. A ground-based interactive
planner combines the power of automated reasoning and conflict resolution techniques with the
insights of the Science Team or Principal Investigator (PI) to prioritize and re-prioritize mission goals.

ASPEN Planning System
Planning and scheduling technology offers considerable promise i n automating rover operations.

Planning and scheduling rover operations involves generating a sequence of low-level commands
from a set of high-level science and engineering goals.

ASPEN (Chien, et al., 2000; Fukanaga, et al., 1997; Rabideau, et al., 1999) is an object-oriented
planning and scheduling system that provides a reusable set of software components that can be
tailored to specific domains. These components include:

+ An expressive constraint modeling language to allow the user to define naturally the

+ A constraint management system for representing and maintaining spacecraft and rover

+ A set of search strategies for plan generation and repair to satisfy hard constraints
+ A language for representing plan preferences and optimizing these preferences
+ A soft, real-time replanning capability
+ A temporal reasoning system for expressing and maintaining temporal constraints
+ A graphical interface for visualizing plans/schedules (for use i n mixed-initiative system in

application domain

operability and resource constraints, as well as activity requirements

which the problem solving process is interactive).

In ASPEN, the main algorithm for automated planning and scheduling is based on a technique
called iterative repair (Zweben et al., 1994). During iterative repair, the conflicts i n the schedule are
detected and addressed one at a time until conflicts no longer exist, or a user-defined time limit has
been exceeded. A conflict is a violation of a resource limitation, parameter dependency or temporal
constraint. Conflicts can be repaired by means of several predefined methods. The repair methods are:
moving an activity, adding a new instance of an activity, deleting an activity, detailing an activity,
abstracting an activity, making a resource reservation of an activity, canceling a reservation,
connecting a temporal constraint, disconnecting a constraint, and changing a parameter value. The
repair algorithm may use any of these methods i n an attempt to resolve a conflict. How the algorithm
performs is largely dependent on the type of conflict being resolved.

Rover knowledge is encoded i n ASPEN under seven core model classes: activities, parameters,
parameter dependencies, temporal constraints, reservations, resources and state variables. An activity
is an occurrence over a time interval that i n some way affects the rover. It can represent anything from
a high-level goal or request to a low-level event or command. Activities are the central structures in
ASPEN, and also the most complicated. Together, these constructs can be used to define rover
procedures, rules and constraints i n order to allow manual or automatic generation of valid sequences
of activities, also called plans or schedules.

2

Once the types of activities are defined, specific instances can be created from the types. Multiple
activity instances created from the same type might have different parameter values, including the
start time. Many camera-imaging activities, for example, can be created from the same type but with
different image targets and at different start times. The sequence of activity instances is what defines
the plan.

The flight rules and constraints are defined within the activities. The flight rules can be defined as
temporal constraints, resource constraints, or system state constraints. Temporal constraints are
defined between activities. An example would be that the rate sensor must warm up for two to three
minutes before a rover traverse. In ASPEN, this would be modeled within the "move rover" activity
as shown in Figure 1. The rate-sensor-heat-up is another activity that is presumed to turn 011 a rate
sensor heater.

Constraints can also be state or resource related. State constraints can either require a particular
state or change to a particular state. Resource constraints can use a particular amount of a resource.
Resources with a capacity of one are called atomic resources. ASPEN also uses non-depletable and
depletable resources. Non-depletable resources are resources that can used by more than one activity
at a time and do not need to be replenished. Each activity can use a different quantity of the resource.
An example would be the rover solar array power. Depletable resources are similar to non-depletable
except that their capacity is diminished after use. I n some cases their capacity can be replenished
(memory capacity) and in other cases it cannot (battery energy, i.e. non-rechargeable primary
batteries). Resource and state constraints are defined within activities using the keyword
"reservations." See Figure 1 for an example.

Activity move-rover {
constraints =

reservations =
starts after end-of rate-sensorpheatpup by [2m,31n];

solar-array-power use 35,
rate-sensor-state changeto "on",
target-state rnustbe "ready";

1;

Figure 1 - ASPEN Modeling Language Example

The job of a planner/scheduler, whether manual or automated, is to accept high-level goals and
generate a set of low-level activities that satisfy the goals and do not violate any of the rover flight
rules or constraints. ASPEN provides a Graphical User Interface (GUT) for manual generation and/or
manipulation of activity sequences. Figure 2 contains a screen dump of the GUT.

Figure 2 - ASPEN GUI

3

Mars Surveyor Lander
The Mars Surveyor 2001 Lander was scheduled for launch i n April 2001. Due to a reorganization

of the Mars Exploration Program at JPL, this launch was cancelled. The mission design for the next
launch opportunity, in 2003, is currently being reviewed. One option under consideration is to launch
a modified version of the 2001 Lander with a payload complement including the Marie Curie rover.
For the purposes of this paper, we are assuming the 2001 Lander configuration with a 2003 arrival
date. If the lander design changes, we will update our planner models accordingly.

The lander will carry an imager to take pictures of the surrounding terrain during its rocket-assisted
descent to the surface. The descent-imaging camera will provide images of the landing site for
geologic analyses, and will aid planning for initial operations and traverses by the rover. The lander
will also be a platform for instruments and technology experiments designed to provide key insights to
decisions regarding successful and cost-effective hLtman missions to Mars. Hardware on the lander
will be used for an in-situ demonstration test of rocket propellant production using gases in the
Martian atmosphere. Other equipment will characterize the Martian soil properties and surface
radiation environment. Figure 3 contains a diagram of the lander and instruments. The Marie Curie
rover will be deployed using a robotic-arm attached to the lander.

Figure 3 - Mars 2001 Lander Figure 4 - Marie Curie Rover

The Marie Curie rover is very similar to the Mars Pathfinder So.journer rover. (See Figure 4.) In
fact, it is the same rover that was used in the Pathfinder test bed during the mission. (Mishkinet al.,
1998; Mishkin 1998) Additional modifications have been made to accommodate the robotic-arm-
based deployment from the 2001 Lander. I n addition, some minor engineering enhancements have
been added. A description of the rover components is included i n Table 1 .

+ 6-Wheeled robotic vehicle, rocker-bogie mobility chassis
+ Mass: 10.5 kilograms
+ Deployed volume: 65cm (1) by 48cm (w) by 3oC111 (11).
+ Intel 80C85 CPU (-1 OOKips), 16K PROM, 64K rad hard RAM, 176K EEPROM, 5 12K RAM
+ Forward Black & White stereo cameras, and rear B&W mono camera

+ GaAs solar panel (1 6W peak)

+ Primary (non-rechargeable) batteries
+ UHF Radio Modem
+ Laser stripers for hazard detection

Table 1 - Rover Description

4

Model Description
The Marie Curie planning model was built to a level at which all flight rules and constraints could

be implemented. The resources include the three cameras, Alpha Proton X-Ray Spectrometer
(APXS), APXS deploy motor, drive motors, solar array, battery, RAM usage, and EEPROM
usage.

There are 27 different state variables used to track the status of various devices, modes, and
parameters. Some of these parameters map directly onto rover internal parameters and others are
related to the ASPEN specific model. We are not modeling all rover internal parameters because
many are not useful for automating planning. We have defined 162 activities of which 63 decompose
directly into low-level rover commands.

There are several constraints that affect overall operations of the Marie Curie rover. These
include:

4 Earth-Mars one-way communications time delay (5-20 minutes)
4 Limited communications bandwidth (generally < 10 Mbits downlink per sol1 available to

4 Limited communications opportunities (1 command upl ink, 2 telemetry downlinks per sol)

The power system is the single most important resource for the Marie Curie Rover. This system
consists of a .22 square meter solar array and 9 LiSOCL batteries. The batteries on Marie Curie are
primarily used during the night for APXS data collection. They are primary batteries and therefore
modeled as non-renewable depletable resources. The solar array is the primary power source used
during the day. The predicted available solar power profile throughout the Mars day must be input
before planning begins. Using a daily model is required due to changing solar array power available
as a result of degradation from dust accumulation and seasonal solar irradiation variability. The angle
of the solar array, which depends on the terrain, will also affect the availability of solar energy. Solar
array angle estimates could be generated by RCW for input into ASPEN.

rover)

A typical Mars day might involve a subset of the following activities:

Complete an APXS data collection that was carried out during the prior night
Capture a rear image of the APXS site
Traverse to an appropriate site and perform a series of soil mechanics experiments, including
several subframe images of soil mounds and depressions created by running individual wheel
motors
Traverse to a designated rock or soil location
Place the APXS sensor head
Capture end-of-day operations images with its forward cameras
Begin APXS data collection
Shut down for the night

APXS data collection usually occurs overnight while the rover is shutdown. Each of these
activities can be input into ASPEN as a goal for that Mars day planning horizon. The format of the
input goals is RML or Rover Modeling Language. RML is an application of Extensible Markup
Language (XML) designed specifically for rover operations. RCW will use RML for input and
output. RML is described in detail i n the next section of this paper.

The exact position of the rover after a traverse activity is subject to dead reckoning error. The
timing of traverse activities is also non-determinant. Because of the inherent problems of coordinating
activities between the event-based rover and time-based lander, wait commands are used to
synchronize activities. When the lander is imaging the rover after a traverse, a wait command is used
to ensure the rover will remain stationary at its destination until the lander completes imaging.
Because the rover executes commands serially, this ensures that another command will not start
execution before the previous command has completed. All rover traverse goals are generated using

1 A Sol is a Martian day, equivalent to about 24 hours and 39 minutes

5

the RCW. (ASPEN is not designed to perform rover motion planning.) The RCW operator can fly a
3-D rover icon through the stereoscopic display of the Martian terrain. By inspecting the stereo scene,
as well as placing the rover icon in various positions within the scene, the operator can assess the
trafficability of the terrain. By placing the icon i n the appropriate position and orientation directly over
the stereo image of the actual rover on the surface, the rover's location and heading are automatically
computed. This position information is output to ASPEN to set the rover end position state. The
rover driver specifies the rover's destinations by designating a series of waypoints i n the scene,
generating waypoint traverse commands.

Rover data storage is a scarce resource that must be tracked within the ASPEN model. The largest
consumer of data storage is the camera image activity. This activity can fill the on-board data storage
if a telemetry session with the lander is not available during the data collection. ASPEN will keep
track of the data storage resource to ensure that all data is downlinked before the buffer is completely
full.

Planning Tool Interfacing: Rover Markup Language (RML)
There are several different tools that can be used for developing rover sequences. In addition to

ASPEN and RCW, other tools can be used for environmental predictions, distributed science
planning, instrument analysis, and engineering performance analysis. Each of these tools is created by
a different set of engineers or scientists that are cognizant i n that particular piece of the rover
operation. In order to simplify the interface between these rover tools, we decided early on to use a
common interface language. We needed to capture all information about rover command generation
and uplink, preferably in exactly one file per uplink. This information includes the following:

+ The science requests that the uplink is designed to satisfy, and the originator of each request
+ The rover commands to be uplinked, with each command cross-referenced to the request or

+ The operators who worked on the uplink
+ The downlink telemetry related to the upl ink
+ References to auxiliary files, such as terrain databases, that were used i n preparing the uplink

requests it helps to implement

In addition, we must generate uplink and downlink reports, preferably i n HTML, so that we can
post them on web sites accessible to the operations teams. The Pathfinder team created these reports
manually, requiring several hours of tedious work for every uplink; we wanted to capture all the
information needed for these reports i n the file, so that future missions could generate the reports
automatically.

We chose to base our data language on XML for several reasons. First, XML is an emerging data
representation standard with widespread support from both proprietary-software and free-software
organizations. Because XML is free and open-source, there is a wide community of users supporting
development of tools and utilities that make XML easier to use. Included i n this set of tools are
numerous free, high-quality parsers usable from several programming languages. We didn't have to
design a data language from scratch (and document it) and then write, test, document, and maintain a
parser for it. All that was necessary was to download a free parser, plug it in, and run it. Because all
of the XML parsers expose a standardized API, we can switch parsers with a minimum of effort and
no changes to data files if a better implementation comes along.

Because XML parsers are available for several languages, we can use the right language for each
job. We can write larger applications i n languages such as C++ or Java, and smaller applications (e.g.,
the HTML report generators) i n languages such as Perl, Python, or Tcl. All of these languages can
parse our XML data equally well, with no extra effort on our part.

XML files tend to be naturally modular. As we discover the need to capture an additional datum,
it's usually trivial to add a section for it into our evolving specification. Also, because the external
representation for XML is based on ASCII, standard Unix shell tools and text editors work with it.
We can search for the existence of particular tags, for instance, or quickly develop a test-input file
using any standard text editor.

6

We still have to do some work to design and document our subset of XML. We also have to
perform some data verification. For example, you can’t tell XML parsers to insist that a field’s value
be a sequence of digits, for instance, so we have to write our own code for that. Still, XML gives us a
great base to start from and a great choice of existing tools, saving us a lot of time, money, and labor.

<Commands>
<CMD-waypoint->

<ARG-waypoint-X> I O 15</ARG-waypoint X>
<ARG waypoint_Y> 1433</ARG_waypoint__Y>
<ARG-waypoint-time>l</ARG waypoint-time>
<Satisfis>photo</Satisfies>

-

</CMD-waypoint->
<CMD-turnheading->

<ARG turnheading->9830</ARG turnheading->
<Satisfies>photo</Satisfies>

-

</CMD turnheading->
<CMD -wait-greater>

<ARG-wait_greater_sensor>SEN_ISOLAR</ARG_wait_greater__sensor>
<ARG wait greater-value>42</ARG-wait-greater-vaIue>
<ARG-wait-greater-limit> 15</ARG-wait-greater-Iimit>
<Satisfies>phzo</Satisfies>
<Comment>Wait up to 15 minutes for decent lightillg</Comment>

</CMD-wait-greater>
<CMD image->

<ARG irnage-shift>shiftO</ARG~i~~~age~shift>
<ARG-image camid>left</ARG image camid>
< A R G - i m a g e t i m e > l l</ARG G a g e time>
<ARG-image compression>btc</ARG-image compression>
<ARG-image-apid>O</ARG_image-apid>
<ARG-image srow>l </ARG-image srow>
<ARG-image scoI>O</ARG-image-scol>
<ARG-image-erow>256</ARG-image-erow>
<ARG-image-ecol>256</ARG-image ecol>
<Satisfies>photo</Satisfies>

</CMD-image->
</Commands>

Figure 5 - Rover Markup Language Example

Figure 5 contains an example of RML. This example consists of commands to take a picture with
the left front rover camera. Included are commands to turn to the photo target, wait for proper
lighting, and take the picture with the proper camera parameters. These commands are part of a
“photo” request defined i n RML. Information about the requestor is also encoded i n RML but not
shown in this example.

Status
Initial work in 1998 consisted of a preliminary proof of concept demonstration i n which we used

automated planning and scheduling technology integrated with WITS to demonstrate automated
commanding for the Rocky-7 rover from the WITS interface. (Backes, et al., 1999) In 2000, we are
providing an in-depth validation of the automated command-generation concept. The ASPEN
planning and scheduling system will be integrated with a rover activity interface and the Rover
Control Workstation. ASPEN will receive RML formatted high-level requests from the activity
interface. ASPEN will then automatically generate validated rover-command sequences that satisfy
these requests and provide those RML formatted sequences to the Rover Control Workstation. The
ASPEN Java-based interface will enable the user to access planned activities and to observe resource
and state constraints. As the ASPEN interface is Java-based, users will be able to access this

7

commanding capability from anywhere on the Internet. The computation intensive aspects of the
commanding capability (such as the planner/scheduler, path planner, uncertainty estimation software,
vision and image processing software, etc.) will reside on one or more rover workstations based in a
central location.

I Move Goals I
I

commands I +

I power, data /" k
Rover Model: activities,

thermal, solar resources, constraints Iterative process,
R M L interface

Figure 6 - End-to-End Automated Commanding System

The end-to-end data flow for this system is shown i n Figure 6. The interaction between ASPEN
and RCW is an iterative process. Both ASPEN and RCW will receive high-level goals. The RCW
input goals will be related to rover motion. RCW will output traverse commands for input into
ASPEN. ASPEN will merge these with other science and engineering goals to produce an
intermediate level plan. The plan will be output to RCW to update motion commands as necessary.
This process will continue until an acceptable plan is generated. Finally a time ordered list of
commands would be output for sequence generation.

The Marie Curie ASPEN model is nearly complete and ready for testing. Initial testing on a
sample of 136 activities produced a conflict free plan i n about 9 seconds. This testing was completed
on a Sun Ultra-2 workstation. These relatively quick plan cycles will allow the Marie Curie Rover
operations team to perform "what-if' analysis on different daily plans. Our goal is that this quick
planning capability will be used to generate commands more frequently than once-per-day, if
communications opportunities permit.

I

Figure 7 - Possible Rover Uplink Dataflow

Our next level of testing will involve generating plans for two typical Sojourner rover days on
Mars. These plans will be compared with the manually generated sequences that were run during the
Sojourner mission. As a result of these tests, minor updates to the model may be required. Once the
model is validated, we will integrate ASPEN with RCW. Figure 7 shows a possible Marie Curie rover
uplink operational data flow. The highlighted boxes show the planner that would be used at both the

8

science planning and engineering planning level. The planner model would contain sufficient
engineering information to ensure that the vast majority of science requests finally approved are
feasible from an engineering standpoint. Eventually we would like to add performance metrics to the
planner model to optimize the generated plans. This will enable automated "what-if" analysis to
generate plans that maximize science and engineering value.

Onboard Rover Planning
In addition to the work with Marie Curie, we are developing a dynamic, onboard planning system

for rover sequence generation. The CASPER (Continuous Activity Scheduling, Planning, Execution
and Re-planning) system (Chien et al., 1999; Chien et al., 2000), is a dynamic extension to ASPEN,
which can not only generate rover command sequences but can also dynamically modify those
sequences in response to changing operating context. If orbital or descent imagery is available,
CASPER interacts with a path planner to estimate traversal lengths and to determine intermediate
waypoints that are needed to navigate around known obstacles.

Once a plan has been generated it is continuously updated during plan execution to correlate with
sensor and other feedback from the environment. I n this way, the planner is highly responsive to
unexpected changes, such as a fortuitous event or equipment failure, and can quickly modify the plan
as needed. For example, if the rover wheel slippage has caused the position estimate uncertainty to
grow too large, the planner can immediately command the rover to stop and perform localization
earlier than originally scheduled. Or, if a particular traversal has used more battery power than
expected, the planner may need to discard one of the remaining science goals. CASPER has been
integrated with control software from the JPL Rocky 7 rover (Volpe et al., 2000) and is currently
being tested on Rocky 7 in the JPL Mars Yard.

Conclusions
Current approaches to rover-sequence generation and validation are largely manual, resulting i n an

expensive, labor and knowledge intensive process. This is an inefficient use of scarce science-PI and
key engineering staff resources. Automation as targeted by this system would automatically generate
a constraint and flight rule checked time ordered list of commands and provides resource analysis
options to enable users to perform more informative and fast trade-off analyses. Initial tests have
shown planning times on the order of seconds rather than hours. Additionally, this technology would
coordinate sequence development between science and engineering teams and would thus help speed
up the consensus process.

Enabling goal-driven commanding of planetary rovers by engineering and science personnel
greatly reduces the workforce requirements for highly skilled rover engineering personnel. The
reduction in team size in turn reduces mission operations costs. I n addition, goal-driven commanding
permits a faster response to changes i n rover state (e.g., faults) or science discoveries by removing the
time consuming manual sequence validation process, allowing "what-if' analyses, and thus reducing
overall cycle times.

Acknowledgement
The TMOD Technology Program funded the research described i n this paper. The Mars Surveyor

Operations Office, the Athena Rover Office, and the Athena Precursor Experiment funded the RCW
development work. All work was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

Bibliography
J. Bresina, K. Golden, D. Smith, and R. Washington, lncreasaed Flexibility and Robustness of

Mars Rovers, Proceedings of the 5th International Symposiuln on AI, Robotics, and Automation in
Space, Noordwijk, The Netherlands, June 1999.

P. Backes, K. Tso, and G. Tharp. "Mars Pathfinder mission Internet-based operations using WITS.
In Proceedings IEEE International Conference on Robotics and Automation," pages 284-291, Leuven,
Belgium, May 1998.

9

P. Backes, G. Rabideau, K. Tso, S. Chien, "Automated Planning and Scheduling for Planetary
Rover Distributed Operations," Proceedings of the IEEE Conference on Robotics and Automation
(ICRA), Detroit, Michigan, May 1999.

S. Chien, R. Knight, A. Stechert, R. Sherwood, G. Rabideau, "Integrated Planning and Execution
for Autonomous Spacecraft", Proceedings of the IEEE Aerospace Conference (IAC), Aspen, CO,
March 1999.

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G . Rabideau, "Using Iterative Repair to
improve Responsiveness of Planning and Scheduling," Proceedings of the Fifth International
Conference on Artificial intelligence Planning and Scheduling, Breckenridge, CO, April 2000.

S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smith, F.
Fisher, T. Barrett, G. Stebbins, D. Tran , "ASPEN - Automating Space Mission Operations using
Automated Planning and Scheduling," SpaceOps 2000, Toulouse, France, June 2000.

A. Fukunaga, G. Rabideau, S. Chien, D. Yan, "Toward an Application Framework for Automated
Planning and Scheduling," Proceedings of the 1997 I nternational Symposium on Artificial
Intelligence, Robotics and Automation for Space, Tokyo, Japan, July 1997.

A. Mishkin, "Field Testing on Mars: Experience Operating the Pathfinder Microrover at Ares
Vallis," presentation at Field Robotics: Theory and Practice workshop, May 16 1998, at the 1998
IEEE international Conference on Robotics and Automation, Leuven, Belgium.

A. Mishkin, J. Morrison, T. Nguyen, H. Stone, B. Cooper, B. Wilcox, "Experiences with
Operations and Autonomy of the Mars Pathfinder Microrover," proceedings of the 1998 IEEE
Aerospace Conference, March 21-28 1998, Snowmass at Aspen, Colorado.

G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A. Govidjee, "Iterative Repair Planning for
Spacecraft Operations in the ASPEN System," International Symposium on Artificial Intelligence
Robotics and Automation i n Space (ISAIRAS), Noordwijk, The Netherlands, June 1999.

R. Volpe, T. Estlin, S. Laubach, C. Olson, and J . Balaram, "Enhanced Mars Rover Navigation
Techniques" To appear in the Proceedings of the IEEE International Conference on Robotics and
Automation, San Francisco, CA, April 2000.

Zweben, M., Daun, B., Davis, E., and Deale, M., "Scheduling and Rescheduling with Iterative
Repair," Intelligent Scheduling, Morgan Kaufmann, San Francisco, 1994, pp. 241-256.

10

